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Abstract. A quantum theory of the dependence on bias voltage of the tunnel magnetoresistance in
a triple barrier system of the form MOMOMOM is presented. The Ms represent magnetic metallic
layers and the Os are thin tunnel barriers. The two inner layers form spin-dependent quantum wells.
The relative orientation of the magnetization in the successive magnetic layers can be changed from
parallel to antiparallel. For a particular thickness of the inner metallic layers, a very large change
of resistance occurs between the parallel and antiparallel magnetic configurations due to the spin
dependence of the resonant tunnelling in these layers. It is shown that oscillations in the voltage
dependence of the magnetoresistance amplitude take place associated with oscillations between
resonant and antiresonant tunnelling as a function of the electrons’ energy.

The recent observations of large magnetoresistance (MR) effects at room temperature in
tunnel junctions of the form MOM′ (M and M′ = magnetic materials, O = oxide tunnel
barrier) has stimulated a renewed interest for these systems, named magnetic valves. Besides
their fundamental interest, these structures are foreseen as being candidates for very sensitive
magnetic field sensors or as memory cells in magnetic random access memories. The largest
MR amplitudes were observed in junctions prepared by oxygen plasma oxidation. In magnetic
valves, the tunnel conductance varies as a function of the angle θ between the magnetization
in the two ferromagnetic layers (magnetic valve effect). So far, the experimental results on
these systems were mainly interpreted on the basis of Slonczewski’s theory [1]. This author
calculated the conductance of a MOM′ junction in a free electron model taking into account
the exchange splitting in the d band. The calculation was made in the framework of classical
quantum mechanics. No scattering of electrons in the magnetic metallic electrodes was taken
into account.

Zhang et al [2] theoretically investigated the transport properties through double tunnel
junctions of the form MOMOM. In such structure, the central magnetic layer M constitutes
a spin-dependent quantum well in which resonance effects occur when the width of the well
is an integer number of the electrons’ wavelengths. The authors showed that at resonances,
the MR ratio in these systems can be three to four times larger that in usual MOM′ magnetic
valves. Furthermore, under these conditions, the conductivity through the system enhances
dramatically. However, in such structures containing only one quantum well, the occurrence
of the resonant tunnelling throughout the structure does not depend on the relative orientation
of the magnetization in the successive magnetic layers. Consequently, the conductivity in such
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structures increases dramatically at resonances but not the magnetoresistance. Furthermore,
the width of the resonance was assumed to be very small (proportional to e−2q0b where q0 is the
damping vector of the evanescent wave within the barrier and b is the barrier width) because
the scattering in the metallic layers was neglected. However, in real systems, electron mean
free paths in magnetic metallic layers are of the order of one to a few nanometres which is not
much longer than the typical layer thickness. This means that electron scattering can play a
significant role and must be included in the calculation of the transport in these systems. The
main effect of the scattering is to decrease the sharpness of the resonances which has strong
consequences for the resonant tunnelling.

Recently, we investigated, from a theoretical point of view, the transport properties
in metal/oxide multilayered structures of the form M1OM2OM3OM4 where M represent
ferromagnetic layers alternating with three insulating barriers (O = oxide) [3]. For particular
thickness of the two inner magnetic layers, resonances occur in the quantum wells formed
by these layers. This leads to a strong increase in the electron transmission through the
insulating barriers. We showed that if the magnetization in the successive magnetic layers can
be changed from parallel to anti-parallel as in spin valves, then, very large magnetoresistance
effects can result due to the interplay of resonance effects in the two neighbouring quantum
wells. The conductivity and magnetoconductivity were calculated within a quantum theory
of linear response (Kubo formalism) taking into account the scattering in the magnetic layers.
We showed that in such structures, giant tunnel magnetoconductivity can arise not only from
a difference between spin up and spin down Fermi wave-vectors in the magnetic layers but
also from spin-dependent mean free paths [3]. In the latter case, the effect of the scattering
is to induce a spin-dependent broadening of the resonances in the quantum wells. Thus, we
showed that very large magnetoresistance effects arise from the possibility to tune the position
of the quantum levels in the two adjacent wells by changing the relative orientation of the
magnetization in the successive magnetic layers. The idea developed in this paper may be
extended to more complex multilayered structures of the form M/(O/M)n (n > 3) with even
larger MR amplitude.

However, from a practical point of view, it is very difficult to prepare the system
with a sufficient degree of control in the thickness of the various layers to satisfy the
resonant conditions in the two inner magnetic layers simultaneously. One of the reasons is
intrinsic: the inverse Fermi momentum and lattice constants are often non-commensurate.
Furthermore, the band structure of ferromagnetic transition metals is rather complex so
that the values of the electron parameters such the Fermi wave-vectors kF are not well
known. Consequently series of samples with varying thickness of the inner magnetic layers
should be grown in a very controlled way to find the thickness at which the resonance
occurs. An alternative procedure consists in changing the electron energy or momentum
by applying an electrical field and hence satisfying the resonance condition without having
to tune the thickness of the magnetic layers. Therefore, we decided to investigate the voltage
dependence of the giant tunnel magnetoresistance in these multilayered (M/O)n structures.
This implies calculating the non-linear response of these systems to a large applied electrical
field.

We consider the transport properties across a multilayered structure of the form
M1OM2OM3OM4 consisting of two thin magnetic layers (M2 and M3) inserted between three
tunnel barriers with two magnetic electrodes at the edges of the structure (M1 and M4). We
assume that, somehow, it is possible to change the relative orientation of the magnetization in
the successive ferromagnetic layers from parallel to antiparallel as in giant-magnetoresistance
multilayers. This can be achieved, for instance, by using ferromagnetic layers of different
coercivities. The expression for the current from one metallic electrode to the other throughout
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the system of potential barriers has the form [4]

I = e

πh̄

∫ ∞

−∞
[f (E) − f (E + eV )] dE

∫
|t |2 d�κ

= 1

e

∫ ∞

−∞
[f (E) − f (E + eV )] dE

∫
σE,x d�κ (1)

where t is the transmission amplitude throughout the system, f (E) and f (E + eV ) are the
Fermi distribution for left and right electrodes, V is the applied voltage and σE,κ(z, z

′) is
the effective non-local conductivity of the system for electron with energy E and in-plane
momentum κ̄ . The z-axis is perpendicular to the interfaces i.e. parallel to the current. The
second equality in (1) comes from expression (14) in [5]. The coordinates (z, z′) must be taken
outside the region where the transmittance is calculated. Despite the non-local character of the
conductance, it was shown in [6] and [7], that the exact expression of the non-local conductivity
in the type of system under consideration does not depend on z and z′. Similarly, if one
calculates the non-local conductivity approximately and takes into account vertex corrections,
the obtained expression of the conductivity does not depend on z and z′. Alternatively, it was
shown in [8] that it is possible to calculate the conductivity in macroscopically inhomogeneous
systems without taking into account vertex corrections but by introducing effective internal
electric fields into the expression of the current. These fields are defined as the gradient of
electrochemical potential. Their value must be calculated in a self-consistent way to insure a
uniform current in the z-direction. In the following, this latter approach was used.

We now describe our model in more detail. We consider the system M/O b/M a/O b/M
a/O b/M in which we assume for simplicity that all magnetic layers are made of the same
magnetic material. The two inner magnetic layers have the same thickness a. The three oxide
barriers O have the same thickness b. The outer electrodes are supposed to be semi-infinite.
As in [3], the electrons are assumed to form a free electron gas with exchange splitting of
spin sub-bands in the ferromagnetic layers. The scattering in the metallic layers is taken into
account by introducing the elastic mean free paths, which are spin dependent in the magnetic
layers. l1 and l2 respectively represent the spin up and spin down mean free paths in M. We
then calculate the field-dependent conductivity σE,κ in (1) by using the Green function method
which was described in our previous paper [3]. The Green functions of the system are solutions
of the following equation:[

E − h̄2

2m

(
κ2 − ∂2

∂z2

)
− eV (z)

]
G(z, z′) = δ(z, z′) (2)

where V (z) = U −Eiz and Ei is the electrical field in the ith layer. To solve equation (2), we
used the WKB approximation [9]. G(z, z′) is written in the form

G(z, z′) = a(z′) exp

( ∫ z

zi

q(τ ) dτ

)
+ b(z′) exp

(
−

∫ z

zi

q(τ ) dτ

)

where a(z′) and b(z′) are unknown coefficients to be determined from the condition of
continuity of the Green functions and derivatives at the boundaries zi . The function q is
defined by

q(z) =
√

2m

h̄2 (U − EF − eV (z)) + κ2

where U is the height of the potential barrier measured from the Fermi energy, EF is the Fermi
energy and eV (z) is the z-dependent electrostatic potential.
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As an example, below is the expression of the Green function for a particular interval of
variables:

G(z1 < z′ < z < z2) = ma0

h̄2q(z′)den
{E+(z1, z

′)(ik1 − q(z1)) − E−(z1, z
′)(ik1 + q(z1))}

×
{

E+(z2, z
′)[eik3a(ik3 − q(z2))F1(k5) − eik3a(ik3 + q(z2))F2(k5)]

−E−(z2, z
′)[eik3a(ik3 + q(z1))F1(k5) − eik3a(ik3 − q(z1))F2(k5)]

}
(3)

where

den = eik3aϕ2
1(k1, q(z1); k3, q(z2))F1(k5) − e−ik3aϕ̃2

1(k1, q(z1); k3, q(z2))F2(k5) (4)

ϕn
m(ki, q(zi); kk, q(zl)) = E+(zm, zn)(iki − q(zi))(ikk + q(zl))

−E−(zm, zn)(iki + q(zi))(ikk − q(zl)) (5)

ϕ̃n
m(ki, q(zi); kk, q(zl)) = E+(zm, zn)(iki + q(zi))(ikk − q(zl))

−E−(zm, zn)(iki − q(zi))(ikk + q(zl)) (6)

F1(k5) = eik5aϕ6
5(k7, q(z6); k5, q(z4))ϕ̃

4
3(k3, q(z2); k5, q(z4))

−e−ik5aϕ4
3(k5, q(z4); k3, q(z2))ϕ̃

5
4(k7, q(z5); k5, q(z3)) (7)

F2(k5) = eik5aϕ4
3(k7, q(z6); k5, q(z4))ϕ̃

4
3(k3, q(z2); k5, q(z4))

−e−ik5aϕ̃4
3(k5, q(z4); k3, q(z2))ϕ̃

6
5(k7, q(z6); k5, q(z4)) (8)

E±(zm, zn) = exp

[
±

∫ zn

zm

q(τ ) dτ

]
(9)

and

ki = ci + idi =
√
k2
Fσ − κ2 + eV (zi)

2m

h̄2 + 2i
kFσ

lσ
. (10)

We neglected the drop of voltage in the metallic layers which is a very reasonable assumption
considering the much higher resistance of the tunnel barriers as compared to that of the metallic
layers in the direction perpendicular to the plane. kFσ and lσ are respectively the spin-dependent
electron Fermi momentum and mean free path in the magnetic layers for the spin direction σ .
The coordinates zi are defined in figure 1. They represent the positions of the various M/O
interfaces.

Z
Z1 Z2 Z3 Z4 Z5 Z6

Figure 1. Schematic representation of the multilayer stacking.

To obtain the MR ratio MR = (G↑↑ − G↑↓)/G↑↓ where G↑↑ and G↑↓ are the
conductances throughout the structure respectively for parallel and antiparallel configurations
of the magnetization in the successive ferromagnetic layers, the two point conductivity
σ(zi, zi+1) is first calculated through every barrier using expressions (2)–(8) and the non-
linear Kubo formula (1). The resulting expressions for σ(zi, zi+1) are rather complex. As an
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example, the expression for σ(z1, z2) is written below in the limit exp(−q(zi)b) � 1:

σ(z1, z2) = e2q2
0

2πh̄

c1c5q
2(z2)(c

2
3 + q2(z2))

c2
1 + q2(z1)

E+(z1, z2) sinh(2d3a)

×{(cosh(2d3a) − 1)(c2
3 + q2(z2))

2

+2[sin(c3a)(c
2
3 − q2(z2)) − 2c3q(z1) cos(c3a)]

2}−1 (11)

where q0 =
√
(2m/h̄2)(U − EF ).

We point out that the calculated expression of σ(z, z′) if z and z′ are inside any barrier
does not depend on z and z′. Furthermore the values of σ through the first and third barriers
are equal. They are however different from the value of the conductivity through the second
barrier. This is due to the fact that we did not take into account vertex corrections. Therefore, as
discussed previously, in order to insure a uniform current along the z-direction, we calculated
the voltage drop across each barrier for a fixed voltage V applied between the outer electrodes,
in a self-consistent way. This calculation was carried out for both parallel and antiparallel
magnetic configurations. We recall that the voltage drop in the metallic layers is negligible;
the electron scattering in the outer electrodes does not influence the total resistivity at all
and the scattering in the inner metallic layers defines the width of the resonance levels.
The voltage drops across the first and third barriers may be quite different from the value
across the second layer, especially at resonance. This may be explained by considering that
electrons tunnel through the first (third) barrier from (to) a continuum of energy to (from) a
resonant level. In contrast, for the second barrier, the electrons tunnel from a resonant level
to another resonant level. Therefore, the second barrier is in some sense short-circuited at
resonance.

To insure that the current is uniform along the z-axis, we calculated numerically, in a
self-consistent way, the voltage across each barrier for a fixed voltage V applied between the
outer electrodes, for both parallel and antiparallel magnetic configurations. The denominator
in (11) has a resonance form. The resonances occur when the thickness ai of the ith metallic
layer satisfies the condition:

tan(aici) = 2q(zi)ci
c2
i − q2(zi)

. (12)

The width of the resonance is of the order of (ai/ lσ ) � 1. The plots of the overall conductivity
and magnetoresistance (MR) versus the thickness of the metallic layer look very much the same
at low and high voltages. These plots were shown in figures 1–3 of [3].

The plots of the I (V ) characteristics for each spin channel are shown in figures 2 and
3 for two different thicknesses a of the metallic layers. In these calculations, the following
parameters were used: l1 = l2 = 100 Å, k1F = 1 Å−1, k2F = 0.4 Å−1, q0 = 1 Å−1. The
curves exhibit several maxima, which are attributed to the occurrence of resonances at fixed
thickness a when V and consequently ci(V ) are varied (see (12)). The difference &V between
two consecutive resonance values of V in the same layer is approximately equal to

e&V ≈ 4πkF

a

h̄2

2m
. (13)

The behaviour of these curves is relatively complex due to the interplay of the resonances in
the two inner magnetic layers for which the drop of voltage is different.

Very large MR amplitudes are obtained at the resonances. The conductance in
parallel magnetic configuration can be ten times larger than in antiparallel magnetic
configuration.
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Figure 2. (a) Voltage dependence of the MR for an
MOMOMOM system with a = 11 Å. The following
values are used for the electron parameters: l1 =
l2 = 100 Å, k1F = 1 Å−1, k2F = 0.4 Å−1, q0 =
1 Å−1. (b) Current for each spin channel in parallel and
antiparallel magnetic configurations.

Figure 3. (a) Voltage dependence of the MR for an
MOMOMOM system with a = 14 Å. The following
values are used for the electron parameters: l1 =
l2 = 100 Å, k1F = 1 Å−1, k2F = 0.4 Å−1, q0 =
1 Å−1. (b) Current for each spin channel in parallel and
antiparallel magnetic configurations.

In figure 3, the positions of the peaks in MR are shifted as compared to figure 2 because
the resonance conditions are not fulfilled for the same electron energy since the width of
the quantum wells is different. It is interesting to note also that at antiresonances, the MR
amplitude can even be negative. The conductance is then larger in the antiparallel magnetic
configuration than in the parallel one.

Besides the oscillations in conductance and MR versus bias voltage, we also point out that
at low voltage (0–0.3 V), the MR decay versus voltage is much slower in these multilayered
M/O systems as compared to a single MOM tunnel junction even after normalization of the
voltage by the number of junctions assuming that they are simply connected in series. To
illustrate this point, we calculated the MR variation versus bias voltage using the same model
and parameters as for the multilayered M/O structure but considering only one tunnel barrier.
The result is plotted in figure 4. In the multilayered case, the MR is almost constant in the
range 0–0.3 V whereas it drops already significantly for a single junction.

Let us now discuss the effect of roughness on the results discussed above. Three situations
can be encountered:

(i) The roughness occurs at the atomic scale. The interfaces are flat but exhibit some atomic
disorder because, for instance, the barrier is made of an amorphous material such as Al2O3.
In such a case, an additional electron scattering occurs at the metal/barrier interface. This
scattering comes in addition to the scattering already taken into account in the bulk of the
metallic layers. It contributes to the broadening of the resonance.
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Figure 4. Voltage dependence of the MR for a single MOM junction, k1F = 1 Å−1, k2F = 0.4 Å−1,
q0 = 1 Å−1.

(ii) The interfaces exhibit large terraces but the terraces are correlated from one interface
to the next so that the thickness of each layer remains uniform. Recent studies carried
out on tunnel junctions deposited on Si substrates with step bunching [10] showed that
this situation can be encountered in metal/insulator systems. As in the previous case, the
interfacial steps contribute to the broadening of the resonances. However, as long as
the thickness of the various layers remains uniform, the overall transport properties are
the same as with ideally flat interfaces.

(iii) The interfaces exhibit wide uncorrelated terraces so that the thickness of the layers varies
by a large fraction of the Fermi wavelength across the sample area. This situation is the
most difficult to describe theoretically. In such a case, the resonance condition is only
satisfied locally. An in-plane component of the current may appear in the metallic layers
in order to reach the most favourable current path. This case would certainly lead to a
drastic decay of the resonance effects previously discussed.

In [11], the authors measured the MR for single and double (not triple) barrier structures
and found that the MR amplitudes at low voltage are approximately the same in both structures.
This is in agreement with our statement that only in triple barrier (or more) systems can
an increase in MR amplitude be expected due to the interplay of spin-dependent resonant
tunnelling in successive wells. Furthermore, they observed that the decrease in MR amplitude
versus voltage was slower with double barrier structures than in single barrier junctions in
accordance with our conclusion at low voltage.
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